Combining Information: Heteroscedastic Random-Effects Models for Interlaboratory Comparisons

Mark G. Vangel
Statistical Engineering Division
National Institute of
Standards and Technology
Building 820, Room 353
Gaithersburg, MD 20899-0001

March 16, 2000

Interlaboratory Studies: The Scenario

- Each of p laboratories makes repeated measurements of m quantities (perhaps corresponding to different concentrations of a chemical analyte).
- The number of measurements made can differ among the laboratories.
- The measurement variability may depend on the material being measured (perhaps as an increasing function of concentration or level).
- The within-laboratory variabilities may differ (often, though, they are assumed to be equal).

Interlaboratory Studies: Some questions

- How should one estimate 'consensus' values of the quantities measured?
- What is the between-laboratory variability (reproducibility)?
- What is the within-laboratory variability (repeatability)? How do they compare?
- How should we look for outliers?

Why Interlaboratory Studies?

- Interlaboratory studies are primarily performed for one of two reasons:
 - 1. Validating a measurement method or standard material
 - 2. Assessing the proficiency of measurement laboratories.

Outline

- A single material measured by multiple laboratories — one-way random model (heteroscedastic and unbalanced)
 - Likelihood Analysis
 - Bayesian Model and Credible Regions
 - Example
- Some results for two-way models.

Dietary Fiber in Apricots Li and Cardozo (1994)

Lab.	x_i	s_i^2	n_i
1	25.32	0.37	2
2	26.72	0.62	2
3	27.89	0.35	2
4	27.70	1.85	2
5	27.42	0.61	2
6	24.30	0.21	2
7	27.11	0.37	2
8	27.28	0.09	2
9	25.37	0.08	2

Mean: $\bar{x} = 26.567$

Weighted Means:

$$MP = 26.472$$
 $GD = 26.164$
 $ANOVA = 26.420$
 $MLE = 27.275$

Statistical Framework: One-Way, Unbalanced, Heteroscedastic Random-Effects ANOVA

- Laboratory sample means x_i distributed independently normal with mean μ and variance $\sigma^2 + \tau_i^2$, where $\tau_i^2 = \sigma_i^2/n_i$.
- Expected mean for *i*th laboratory is also normal, with mean μ and variance σ^2 .
- Sufficient statistics x_i and $t_i^2 = s_i^2/n_i$.

If x_{ij} denotes the $j ext{th}$ measurement from the $i ext{th}$ lab, then

$$x_{ij} = \mu + b_i + e_{ij},$$

where $b_i \sim N(0, \sigma^2)$ and $e_{ij} = N(0, \sigma_i^2)$; mutually independent.

Maximum Likelihood (Cochran, 1937)

Let $\omega_i=1/(\sigma^2+\tau_i^2)$, $\nu_i=n_i-1$, and determine $\hat{\sigma}$, $\hat{\tau}_i^2$, and $\hat{\mu}$ to satisfy

$$(A_i) \ \omega_i - \omega_i^2 (x_i - \mu)^2 + \nu_i \left(\frac{1}{\tau_i^2} - \frac{t_i^2}{\tau_i^4} \right) = 0$$

(B)
$$\sum_{i=1}^{k} \omega_i^2 (x_i - \mu)^2 = \sum_{i=1}^{k} \omega_i$$

(C)
$$\mu = \frac{\sum_{i=1}^{k} \omega_i x_i}{\sum_{i=1}^{k} \omega_i}$$

Note that (B) may have multiple roots. Cochran (1937) proposed setting $\tau_i^2 = t_i^2$ and solving (B) for σ^2 , then using (C).

ML Equations

$$\mu = \frac{\sum_{i=1}^{p} \gamma_i x_i}{\sum_i \gamma_i} = \frac{\sum_{i=1}^{p} \omega_i x_i}{\sum_i \omega_i}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{p} \gamma_{i} \left[(x_{i} - \mu)^{2} + \frac{\nu_{i} t_{i}^{2}}{1 - \gamma_{i}} \right]}{\sum_{i=1}^{p} n_{i}}$$

$$\gamma_i^3 - (a_i + 2)\gamma_i^2 +$$

$$[(n_i + 1)a_i + (n_i - 1)b_i + 1]\gamma_i$$

$$-n_i a_i = 0$$

where

$$\gamma_i \equiv \frac{\sigma^2}{\sigma^2 + \tau_i^2}$$
$$a_i \equiv \frac{\sigma^2}{(x_i - \mu)^2}$$

and

$$b_i \equiv \frac{t_i^2}{(x_i - \mu)^2}.$$

Result #1: Monotone Convergence to Stationary Points of the Likelihood

- For any starting values μ_0 , σ_0^2 , maximize the likelihood over the weights by solving the cubics. (If there are multiple real roots, choose the one which causes the biggest increase in the likelihood.)
- Let

$$\sigma_1^2 = \frac{\sum_{i=1}^p \gamma_i \left[(x_i - \mu)^2 + \frac{\nu_i t_i^2}{1 - \gamma_i} \right]}{\sum_{i=1}^p n_i}$$

$$\mu_1 = \frac{\sum_{i=1}^p \gamma_i x_i}{\sum_{i=1}^p \gamma_i}$$

solve for new weights, and iterate.

 This iteration, regardless of starting values, always converges to a stationary point of the likelihood, and increases the likelihood at each step.

Result #2: Location of Stationary Values of the Likelihood

At a stationary point of the likelihood,

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{p} \gamma_i^2 (x_i - \mu)^2}{\sum_{i=1}^{p} \gamma_i}$$

hence

• All of the stationary points of the likelihood $\hat{\mu}$ and $\hat{\sigma}$ are within the rectangle in the (μ, σ) plane given by

$$\min_{i}(x_i) \leq \tilde{\mu} \leq \max_{i}(x_i)$$

and

$$0 \leq \tilde{\sigma} \leq \max_{i}(x_i) - \min_{i}(x_i).$$

• After the appropriate location-scale transformation of the data, it is only necessary to search the unit square in the (μ, σ) plane for stationary values.

Lab. 6 an Outlier for Apricot Data

Result #3: Location of the Roots of Cubic Equations for Weights (γ_i)

- Each cubic likelihood equation has one or three roots $\gamma_i \in [0,1]$.
- A necessary condition for three roots is that

$$(x_i - \mu)^2 \ge \max(\sigma^2/q_i, t_i^2/h_i),$$

where

$$q_{i} = -2 - 6\sqrt{n_{i}} \sin \left\{ \frac{1}{3} \left[\sin^{-1} \left(\sqrt{\frac{n_{i} - 1}{n_{i}}} \right) - \frac{\pi}{2} \right] \right\}$$
$$= \frac{8}{27n_{i}} + O(n_{i}^{-2})$$

and

$$h_i = \frac{(1-q_i)^3}{27(n_i-1)} = \frac{1}{27n_i} + O(n_i^{-2}).$$

• These values q_i and h_i are the smallest for which this is necessary.

One-Way Models in Interlaboratory Studies: The Mandel-Paule Estimator J. of Research of the NBS (1982)

• For arbitrary positive weights $\{w_i\}_{i=1}^k$, weighted mean is

$$\tilde{\mu} = \frac{\sum_{i=1}^{p} w_i x_i}{\sum_{i=1}^{p} w_i}.$$

 \bullet Mandel-Paule estimate, $\mu_{\rm MP},$ of μ is the weighted mean $\tilde{\mu}$ for which

$$w_i \equiv \frac{1}{\tilde{\sigma}^2 + t_i^2}$$

where $\tilde{\sigma}^2$ is the root (if any) of

$$Q = \sum_{i=1}^{p} w_i (x_i - \tilde{\mu})^2 = p - 1$$

• Note: Q is convex decreasing on $[0,\infty)$, and $Q\sim\chi^2_{p-1}$ if

$$w_i = \omega_i \equiv \frac{1}{\sigma^2 + \tau_i^2}$$

The Mandel-Paule Algorithm and ML/REML

Maximum-Likelihood for a linear model

$$Y = X\beta + e$$

where $e \sim N(0, \Sigma)$ is equivalent to minimizing $|\Sigma|$, subject to

$$(y - X\widehat{\beta})^T \Sigma^{-1} (y - X\widehat{\beta}) = n \tag{1}$$

where $\widehat{\beta}$ is the GLS estimate of β , and n is the number of observations.

For our one-way model, if the σ_i^2 are replaced by s_i^2 , then (1), an equation in σ^2 alone, is

$$\sum_{i=1}^{p} w_i (x_i - \tilde{\mu})^2 = p.$$

Had REML been used, rather than ML, then the p on the RHS above would be a p-1, precisely Mandel and Paule's equation.

Hierarchical Model With Noninformative Priors

 $i = 1, \dots, p$ indexes laboratories

 $j = 1, \dots, n_i$ indexes measurements

$$p(x_{ij}|\delta_i, \sigma_i^2) = N(\delta_i, \sigma_i^2)$$

$$p(\sigma_i) \propto 1/\sigma_i$$

$$p(\delta_i|\mu, \sigma^2) = N(\mu, \sigma^2)$$

$$p(\mu) = 1$$

$$p(\sigma) = 1$$

A Useful Probability Density

Let T_{ν} and Z denote independent Student-t and standard normal random variables, and assume that $\psi \geq 0$ and $\nu > 0$. Then

$$U = T_{\nu} + Z\sqrt{\frac{\psi}{2}}$$

has density

$$f_{\nu}(u;\psi) \equiv \frac{1}{\sqrt{1 - v/2}} \int_{0}^{\infty} \frac{y^{(\nu+1)/2 - 1} e^{-y\left[1 + \frac{u^2}{\psi y + \nu}\right]}}{\sqrt{\psi y + \nu}} dy.$$

Posterior of (μ, σ)

- Assume $\delta_i \sim N(\mu, \sigma^2)$, $\sigma \sim p(\sigma)$, $p(\mu) = 1$, $p(\sigma_i) = 1/\sigma_i$.
- Then the posterior of (μ, σ) is

$$p(\mu, \sigma | \{x_{ij}\}) \propto p(\sigma) \prod_{i=1}^p \frac{1}{t_i} f_{n_i-1} \left[\frac{x_i - \mu}{t_i}; \frac{2\sigma^2}{t_i^2} \right].$$

• The posterior of μ given $\sigma=0$ is a product of scaled t-densities centered at the x_i , since

$$\frac{1}{t_i} f_{n_i-1} \left[\frac{x_i - \mu}{t_i}; 0 \right] = \frac{1}{t_i} T'_{n_i-1} \left(\frac{x_i - \mu}{t_i} \right).$$

• We will take $p(\sigma) = 1$, though an arbitrary proper prior does not introduce additional difficulties.

Approximate Confidence Intervals: Apricot Fiber Data

Between-Lab. Standard Deviation
Post. mean = 1.438 Post. S.D. = 0.558 0.633 < sigma < 2.763

0

Small Simulation Comparing Bayesian and Frequentist Intervals

$$\mu = 0$$

$$\sigma_i = \sigma_e$$

$$\sigma^2 + \sigma_e^2 = 1$$

$$\rho = \sigma^2/(\sigma_e^2 + \sigma^2) = 1/2$$

Simulation Comparing Confidence Intervals (5 Groups of 5, rho=.5, mu=0, sigma =1)

A Two-Way Mixed Model (Heteroscedastic, no Interaction)

$$x_{ijk} = \theta_k + \delta_i + e_{ijk},$$

- i = 1, ..., p Laboratories
- $j = 1, \ldots, n_i$ Replicates
- k = 1, ..., m Materials

$$\delta_i \sim N(0, \sigma^2)$$

$$e_{ijk} \sim N(0, \sigma_i^2)$$

Some notation: $\tau_i^2 \equiv \sigma_i^2/(n_i m)$, $\nu_i \equiv n_i m - 1$.

ML Equations

$$\theta_k - \bar{\theta} \equiv \phi_k = \frac{\sum_{i=1}^p (\bar{x}_{i \cdot k} - \bar{x}_{i \cdot .}) / \tau_i^2}{\sum_{i=1}^p 1 / \tau_i^2}$$

$$\bar{\theta} = \frac{\sum_{i=1}^{p} \gamma_i \bar{x}_{i...}}{\sum_{i=1}^{p} \gamma_i}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{p} \gamma_{i} \left[(\bar{x}_{i..} - \bar{\theta})^{2} + \frac{\nu_{i} t_{i}^{2}}{1 - \gamma_{i}} \right]}{\sum_{i=1}^{p} n_{i}}$$

Where $\tau_i^2 \equiv \sigma_i^2/(n_i m)$, $\nu_i \equiv m n_i - 1$, $\gamma_i \equiv \sigma^2/(\sigma^2 + \tau_i^2)$, and

$$t_i^2 \equiv \frac{\sum_{j,k} (x_{ijk} - \bar{x}_{i\cdot k})^2 + n_i \sum_k (\bar{x}_{i\cdot k} - \bar{x}_{i\cdot k} - \phi_k)^2}{\nu_i n_i m}$$

ML Equations (Cont'd)

The weights $\{\gamma_i\}_{i=1}^p$ are roots of the cubic equations

$$\gamma_i^3 - (a_i + 2)\gamma_i^2 +$$

$$[(n_i m + 1)a_i + \nu_i b_i + 1]\gamma_i n_i a_i = 0$$

where

$$a_i \equiv \frac{\sigma^2}{(\bar{x}_{i..} - \bar{\theta})^2}$$

and

$$b_i \equiv \frac{t_i^2}{(\bar{x}_{i..} - \bar{\theta})^2}.$$

An ML Iteration

- 1. Begin with estimates $\left\{\gamma_i^{(s)}\right\}$.
- 2. Calculate the following:

$$\phi_{k}^{(s+1)} = \frac{\sum_{i=1}^{p} (\bar{x}_{i \cdot k} - \bar{x}_{i \cdot .}) / \tau_{i}^{2(s)}}{\sum_{i=1}^{p} 1 / \tau_{i}^{2(s)}}$$

$$\bar{\theta}^{(s+1)} = \frac{\sum_{i=1}^{p} \gamma_{i}^{(s)} \bar{x}_{i \cdot .}}{\sum_{i=1}^{p} \gamma_{i}^{(s)}}$$

$$\sigma_{(s+1)}^{2} = \frac{\sum_{i=1}^{p} \gamma_{i}^{(s)} \left[(\bar{x}_{i \cdot .} - \bar{\theta})^{2} + \frac{\nu_{i} t_{i}^{2}}{1 - \gamma_{i}^{(s)}} \right]}{\sum_{i=1}^{p} n_{i}}$$

3. Note that if the ϕ_k are constrained to satisfy the above ML equation, then

$$t_i^2 = \frac{\sum_{j,k} (x_{ijk} - \bar{x}_{i..})^2 - \sum_k \phi_k^2 / m}{n_i \nu_i m}$$

4. Solve the cubics for new estimates $\gamma_i^{(s+1)}$, and iterate.

Some Theoretical Results for Two-Way Mixed Model

The one-way results discussed earlier generalize:

- Monotone convergence
- All stationary values of likelihood in box in $(\mu, \sigma, \sum_k \phi_k^2)$ space.
- ullet Exactly one weight $\gamma_i \in [0,1]$, unless ith lab an outlier and n_i small
- Variances cannot be negative at solution to likelihood equation.

Summary

- A reparametrization of the likelihood in the one-way heteroscedastic model leads to new insights in likelihood and Bayesian analyses.
- A procedure of Mandel and Paule is equivalent to a modified REML estimator of the mean in an one-way heteroscedastic model.
- Many of these results carry over to two-way models; this work is ongoing.